Leader in Biomolecular Solutions for Life Science

ABclonal www.abclonal.com

Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb

Catalog No.: A3157

Basic Information

Observed MW

17kDa

Calculated MW

16kDa

Category

Polyclonal Antibody

Applications

WB,IHC-P,IF/ICC,ChIP,ELISA

Cross-Reactivity

Human, Mouse, Rat, Other (Wide Range Predicted)

Background

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3.

Recommended Dilutions

WB 1:100 - 1:500

IHC-P 1:50 - 1:200

IF/ICC 1:50 - 1:200

ChIP 5μg antibody for 5μg-10μg of Chromatin

Immunogen Information

Gene ID8290/8350

Swiss Prot
Q16695/P68431

Immunogen

A synthetic asymmetric dimethylated peptide around R8 of human histone H3 (NP 003520.1).

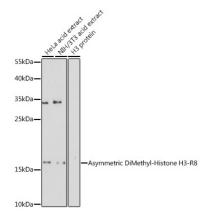
Synonyms

H3t; H3.4; H3/g; H3FT; H3C16; HIST3H3; Asymmetric DiMethyl-Histone H3-R8

Contact

www.abclonal.com

Product Information


SourceIsotypePurificationRabbitIgGAffinity purification

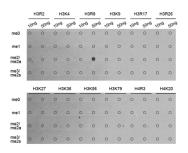
Storage

Store at -20°C. Avoid freeze / thaw cycles.

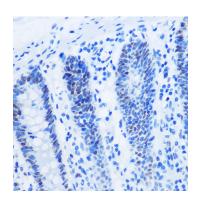
Buffer: PBS with 0.05% proclin300,50% glycerol,pH7.3.

Validation Data

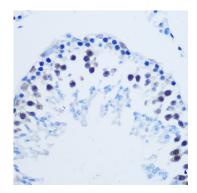
Western blot analysis of various lysates using Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb (A3157) at

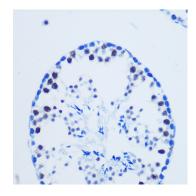

Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution.

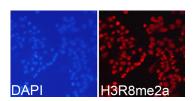
Lysates/proteins: 25µg per lane.


Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).


Exposure time: 180s.


Dot-blot analysis of all sorts of methylation peptides using Asymmetric DiMethyl-Histone H3-R8 antibody (A3157).


Immunohistochemistry analysis of Asymmetric DiMethyl-Histone H3-R8 in paraffin-embedded Human colon using Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb (A3157) at dilution of 1:100 (40x lens).Perform microwave antigen retrieval with 10 mM PBS buffer pH 7.2 before commencing with IHC staining protocol.

Immunohistochemistry analysis of Asymmetric DiMethyl-Histone H3-R8 in paraffin-embedded Rat testis using Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb (A3157) at dilution of 1:100 (40x lens).Perform microwave antigen retrieval with 10 mM PBS buffer pH 7.2 before commencing with IHC staining protocol.

Immunohistochemistry analysis of Asymmetric DiMethyl-Histone H3-R8 in paraffin-embedded Mouse testis using Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb (A3157) at dilution of 1:100 (40x lens).Perform microwave antigen retrieval with 10 mM PBS buffer pH 7.2 before commencing with IHC staining protocol.

Immunofluorescence analysis of 293T cells using Asymmetric DiMethyl-Histone H3-R8 Rabbit pAb (A3157). Blue: DAPI for nuclear staining.

Chromatin immunoprecipitation analysis of extracts of HeLa cells, using Asymmetric DiMethyl-Histone H3-R8 antibody (A3157) and rabbit IgG.The amount of immunoprecipitated DNA was checked by

quantitative PCR. Histogram was constructed by the ratios of the immunoprecipitated DNA to the input.