Pfu-fast 2X PCR Master Mix with Dye

Catalog: RK20654 Size: 100 RXN / 500 RXN Concentration: 2X Components:

Pfu-fast 2X PCR Master Mix with Dye

RM20377

Product Description

Pfu DNA Polymerase is a high-fidelity, thermostable enzyme isolated from *Pyrococcus furiosus*. *Pfu* DNA Polymerase possesses $3' \rightarrow 5'$ exonuclease (proofreading) activity. Base misincorporations that may occur during polymerization are rapidly excised by this proofreading activity.

Pfu-fast DNA Polymerase has been genetically engineered to enhance the amplification efficiency by fusing DNA binding domains to the *Pfu* DNA polymerase. *Pfu*-fast DNA Polymerase has the characteristics of high amplification speed (extension ~2 kb/min), high fidelity and strong anti-interference ability.

Consequently, *Pfu*-fast DNA Polymerase is recommended for use in PCR and primer extension reactions that require high-fidelity synthesis. *Pfu*-fast DNA Polymerase-generated PCR fragments are blunt-ended.

Pfu-fast 2X PCR Master Mix is an optimized ready-to-use solution containing *Pfu*-fast DNA Polymerase, dNTPs, MgCl₂, KCI and stabilizers, as well as two commonly used tracking dyes for DNA gels. On a 1% agarose gel in 1X TBE, Xylene Cyanol FF migrates at ~4 kb and Tartrazine migrates at ~10 bp. Both dyes are present in concentrations that do not mask comigrating DNA bands.

1X Master Mix Composition:

10 mM Tris-HCl, 1.5 mM MgCl₂, 50 mM KCl, 0.08% IPGAL 630, 0.05% Tween 20, pH8.6 @25 °C; 200 μM dNTPs, 5% Glycerol, 40 U/ml *Pfu*-fast DNA Polymerase, 1X Xylene Cyanol, 1X Tartrazine.

Storage Temperature: -20 °C

Heat Inactivation: No

5' - 3' Exonuclease: No

3' - 5' Exonuclease: Yes

Instructions

Reaction setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98 $^{\circ}$ C).

Take 25 μ l /50 μ l system as an example.

Composition	25 µl	50 µl	Final Conc.
Nuclease-free water	to 25 µl	to 50 µl	
10 µM Forward	0.5 µl	1 µl	0.2 µM
Primer			(0.05~1 µM)
10 µM Reverse	0.5 µl	1 µl	0.2 µM
Primer			(0.05~1 µM)
Template DNA	variable	variable	<1 µg/50 µl
Pfu-fast 2X PCR	12.5 µl	25 µl	1X
Master Mix with Dye			

Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

Incubated in a thermocycler as the below program:

Temp	Plasmid	cDNA	Cycles
	/Genome DNA		
95 °C	2 min	1 min	1
95 °C	20s	20s	Plasmid/gen
T _m -5 ℃	20s	20s	ome: 30-35;
72 °C	15s (≤1 kb) or 2-4	30s (≤1 kb) or 2	cDNA: 40.
	kb/min (>1 kb)	kb/min (>1 kb)	
72 °C	5 min	5 min	1
4-10 ℃	∞	8	1

1

For research purposes only. Not for therapeutic or diagnostic purposes.

Order: order@abclonal.com Tech: support@abclonal.com

Please visit http://abclonal.com for a complete listing of recommended products.

General Guidelines:

1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR. Recommended amounts of DNA template for a 50 µl reaction are as follows:

DNA	Amount	
Genomic	1 ng–1 μg	
Plasmid or viral	1 pg–1 ng	

2. Primers:

Oligonucleotide primers are generally 20-40 nucleotides in length and ideally have a GC content of 40-60%. Computer programs such as Primer3 can be used to design or analyze primers. The final concentration of each primer in a PCR may be 0.05-1 µM, typically 0.1-0.5 µM.

3. Mg++ and additives:

Mg++ concentration of 1.5-2.0 mM is optimal for most PCR products generated with Pfu-fast DNA Polymerase. The final Mg++concentration in 1X Pfu-fast PCR Master Mix with Dye is 1.5 mM. This supports satisfactory amplification of most amplicons. However, Mg++ can be further optimized in 0.5 or 1.0 mM increments using MgCl₂.

Amplification of some difficult targets, like GC-rich sequences, may be improved with additives, such as DMSO or formamide.

4. Denaturation:

An initial denaturation of 30 seconds at 95 °C is sufficient for most amplicons from pure DNA templates. For difficult templates such as GC rich sequences, a longer denaturation of 2-4 minutes at 95 °C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 5 minute incubation at 95 °C is recommended to lyse cells.

During thermocycling a 15-30 second denaturation at 95 °C is recommended.

5. Annealing:

The annealing step is typically 15-60 seconds. Annealing temperature is based on the Tm of the primer pair and is typically 45-68 °C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5 $^{\circ}$ C below the calculated T_m.

6. Extension:

The recommended extension temperature is 72 °C. Extension times

are generally 30S per kb. A final extension of 5 minutes at 72 °C is recommended.

7. Cycle number:

Generally, 30-35 cycles yield sufficient product. Up to 40 cycles may be required to detect low-copy-number targets.

2 For research purposes only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products.