ABclonal

WEB: www.abclonal.com

Pfu-fast 2X PCR

Master Mix

Catalog: RK20652 Size: 100 RXN/500 RXN Concentration: 2X

Components:

Pfu-fast 2X PCR Master Mix

RM20450

Product Description

Pfu DNA Polymerase is a high-fidelity, thermostable enzyme isolated from Pyrococcus furiosus. Pfu DNA Polymerase possesses 3'→5' exonuclease (proofreading) activity. Base misincorporations that may occur during polymerization are rapidly excised by this proofreading activity.

Pfu-fast DNA Polymerase has been genetically engineered to enhance the amplification efficiency by fusing DNA binding domains to the *Pfu* DNA polymerase. *Pfu*-fast DNA Polymerase has the characteristics of high amplification speed (extension ~2 kb/min), high fidelity and strong anti-interference ability.

Consequently, *Pfu*-fast DNA Polymerase is recommended for use in PCR and primer extension reactions that require high-fidelity synthesis. *Pfu*-fast DNA Polymerase-generated PCR fragments are blunt-ended.

Pfu-fast 2X PCR Master Mix is an optimized ready-to-use solution containing *Pfu*-fast DNA Polymerase, dNTPs, MgCl₂, KCI and stabilizers.

1X Master Mix Composition:

10 mM Tris-HCl, 1.5 mM MgCl₂, 50 mM KCl, 0.08% IPGAL630, 0.05% Tween 20, pH8.6 @25 $^{\circ}$ C; 200 uM dNTPs, 5% Glycerol, 40 U/ml *Pfu*-fast DNA Polymerase.

Storage Temperature: $-20~\mathrm{C}$

Heat Inactivation: No

5' - 3' Exonuclease: No

3' - 5' Exonuclease: Yes

Order: order@abclonal.com
Tech: support@abclonal.com

Instructions

Reaction setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98 $^{\circ}$ C).

Take 25 µl /50 µl system as an example.

		-	
Composition	25 µl	50 µl	Final Conc.
Nuclease-free	to 25 µl	to 50 µl	
water			
10 μM Forward	0.5 µl	1 μΙ	0.2 μΜ
Primer			(0.05~1 µM)
10 μM Reverse	0.5 μl	1 μl	0.2 μΜ
Primer			(0.05~1 µM)
Template DNA	variable	variable	<1 µg/50 µl
Pfu-fast 2X PCR	12.5 μl	25 μl	1X
Master Mix			

Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

Incubated in a thermocycler as the below program:

Temp	Plasmid	cDNA	Cycles
	/Genome DNA		
95 ℃	2 min	1 min	1
95℃	20 s	20 s	Plasmid/gen
T _m -5 ℃	20 s	20 s	ome: 30-35;
72 ℃	15 s (≤1 kb) or 2-4	30 s (≤1 kb) or 2	cDNA: 40.
	kb/min (>1 kb)	kb/min (>1 kb)	
72 ℃	5 min	5 min	1
4-10 ℃	∞	∞	1

General Guidelines:

1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR. Recommended amounts of DNA template for a 50 µl reaction are as follows:

DNA	Amount
Genomic	1 ng-1 μg
Plasmid or viral	1 pg-1 ng

2. Primers:

Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 can be used to design or analyze primers. The final concentration of each primer in a PCR may be 0.05–1 μ M, typically 0.1–0.5 μ M.

3. Mg++ and additives:

Mg++ concentration of 1.5–2.0 mM is optimal for most PCR products generated with *Pfu*-fast DNA Polymerase. The final Mg++concentration in 1X *Pfu*-fast PCR Master Mix is 1.5 mM. This supports satisfactory amplification of most amplicons. However, Mg++ can be further optimized in 0.5 or 1.0 mM increments using MgCl₂.

Amplification of some difficult targets, like GC-rich sequences, may be improved with additives, such as DMSO or formamide.

4. Denaturation:

An initial denaturation of 30 seconds at 95 °C is sufficient for most amplicons from pure DNA templates. For difficult templates such as GC rich sequences, a longer denaturation of 2–4 minutes at 95 °C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 5 minute incubation at 95 °C is recommended to lyse cells.

During thermocycling a 15–30 second denaturation at 95 $^{\circ}$ C is recommended.

5. Annealing:

The annealing step is typically 15–60 seconds. Annealing temperature is based on the T_m of the primer pair and is typically 45–68 °C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5 °C below the calculated T_m .

6. Extension:

The recommended extension temperature is 72 $^{\circ}$ C. Extension times

are generally 30S per kb. A final extension of 5 minutes at 72 $^{\circ}$ C is recommended.

7. Cycle number:

Generally, 30–35 cycles yield sufficient product. Up to 40 cycles may be required to detect low-copy-number targets.